CosmoPhotoz Documentation
Release

J. Elliott, R. S. de Souza, A. Krone-Martins

March 21, 2015

Contents

Installation 3
1.1 Requirements o o v v it s e e e e e e e e e e e e e 3
Introduction 5
Examples 7
3.1 PHATO . . . e 7
32 RealData e e e e 10
CosmoPhotoz package 17
4.1 CosmoPhotoz.photozmodule e 17
4.2 CosmoPhotoz.run_glmmodule e 17
Indices and tables 19

CosmoPhotoz Documentation, Release

Contents:

Contents 1

CosmoPhotoz Documentation, Release

2 Contents

CHAPTER 1

Installation

The package can be installed using the PyPI and pip.

$ pip install -U CosmoPhotoz

Or if the tarball or repository is downloaded, distutils can be

$ python setup.py install

The PyPI package page can be accessed at PyPI

1.1 Requirements

This will only run on Python >= 2.7 or >= 3.3 as seaborn does not work on Python <= 2.6.

https://pypi.python.org/pypi?name=CosmoPhotoz&version=0.1

CosmoPhotoz Documentation, Release

4 Chapter 1. Installation

CHAPTER 2

Introduction

This package provides user-friendly interfaces to perform fast and reliable photometric redshift estimation. The code
makes use of generalized linear models, more specifically the Gamma family.

The methodology and test cases of the software will be accessible in the future via an article on Astronomy and
Computing. The documentation will be updated when it has been submitted to arXiv.

The problem to be solved is to estimate the redshift of a galaxy based on its multi-wavelength photometry. Such a
problem will become increasingly apparent with the new set of instruments to begin observing in the near future, e.g.
LSST. They will detect more sources than they can carry out follow up spectroscopy on, and so machine learning
techniques must be used.

The gamma family that originates from the wider set of generalized linear models, is a distribution that reproduces
positive and continuous observables. We show that this technique requires much smaller training sizes and computa-
tional execution time to estimate values of redshift from the multi-wavelength photometry, than conventional methods
such as neural networks. Despite the less strict requirements of the model, the fits are similar and sometimes better
than the other techniques used.

This package allows you to train a GLM on a sample of known redshifts and then estimate the photometric redshifts
of a sample for which you have no redshifts.

CosmoPhotoz Documentation, Release

6 Chapter 2. Introduction

CHAPTER 3

Examples

3.1 PHATO

We first show the usage of GLMs to fit synthetic redshifts. We have a dataset that has both magnitudes and redshifts
for each object.

$matplotlib inline
from CosmoPhotoz.photoz import PhotoSample

Make an instance of the PhotoSample class and define the filename of your sample

PHATO = PhotoSample (filename="../data/PHATO.csv", family="Gamma", link="log")

Let’s specify the number of PCAs we want to fit and the size of the training sample

PHATO.num_components = 5
PHATO.test_size = 5000

Now run the PCA decomposition and GLM fitting

PHATO.run_full ()

CosmoPhotoz Documentation, Release

al
5

Densitv

-0.5 aa 05 1.0 15 20

{zpll{}t _zspm*)f'l(]' + zspw_‘

<matplotlib.figure.Figure at OxblallaZc>

8 Chapter 3. Examples

CosmoPhotoz Documentation, Release

3.1. PHATO

CosmoPhotoz Documentation, Release

m%

+

— 0z

-

2 " ? T T
hlf 02

‘E 04

N

o3 013 025 035 045 0585 085 075 085
A

spec

3.2 Real Data

We now show you how to use a dataset to train your GLM model and then how to fit it to a separate testing dataset.
We also show that you can use the Quantile family rather than a Gamma family.

SDSS = PhotoSample (filename_train="../data/SDSS_train.csv", filename_test="../data/SDSS_test.csv", f£:
We note that the training set contains redshift, but the test dataset does not contain a redshift field. We run each step
independently to show you the innards of run_all() work. Utilising the library in an object-oriented manner allows

you to interact in a more easier manner when investigating such things as the training sample size. See later for an
example.

Applying the GLM to the SDSS

1. We run principle component analysis to ensure that each component is orthogonal (independent and identically
distributed).

SDSS.do_PCA ()
print ("PCA has decided to use {0} components".format (SDSS.num_components))

PCA has decided to use 4 components

2. First we ensure the datasets are resplit after PCA and carry out the GLM fitting.

SDSS.split_sample (random=False)
SDSS.do_GLM()

10 Chapter 3. Examples

CosmoPhotoz Documentation, Release

QuantReg Regression Results

Dep. Variable: redshift Pseudo R-squared: 0.8158
Model: QuantReg Bandwidth: 0.008182
Method: Least Squares Sparsity: 0.08200
Date: Tue, 19 Aug 2014 No. Observations: 10000
Time: 15:05:54 Df Residuals: 9984
Df Model: 15
coef std err t P>\t [95.0% Conf. Int.]
Intercept 0.3156 0.000 692.656 0.000 0.315 0.317
PC1 0.0493 0.000 385.097 0.000 0.049 0.050
PC2 -0.0322 0.001 -43.416 0.000 -0.034 -0.031
PC1l:PC2 0.0045 0.000 21.331 0.000 0.004 0.005
PC3 0.2093 0.002 103.342 0.000 0.205 0.213
PC1:PC3 -0.0213 0.000 -45.427 0.000 -0.022 -0.020
PC2:PC3 0.0409 0.001 28.324 0.000 0.038 0.044
PC1l:PC2:PC3 -0.0096 0.000 -25.380 0.000 -0.010 -0.009
PC4 0.2813 0.006 46.342 0.000 0.269 0.293
PCl:PC4 -0.0003 0.002 -0.213 0.831 -0.003 0.003
PC2:PC4 -0.2007 0.006 -31.264 0.000 -0.213 -0.188
PC1:PC2:PC4 0.0321 0.002 19.469 0.000 0.029 0.035
PC3:PC4 -0.0806 0.012 -6.999 0.000 -0.103 -0.058
PCl:PC3:PC4 0.0108 0.002 4.640 0.000 0.006 0.015
PC2:PC3:PC4 -0.0591 0.008 -7.600 0.000 -0.074 -0.044
PCl:PC2:PC3:PC4 0.0175 0.002 9.303 0.000 0.014 0.021

3. Make a 1 dimensional KDE plot of the number of outliers.

SDSS.make_1D_KDE ()

3.2. Real Data

11

CosmoPhotoz Documentation, Release

G

14

12 n

10

ad

Densitv
m

o " .

2.0 -1.5 -1.0 0.5 Qo 05
IL’zpnlmﬂ: _Espw) /1 T Espw

4. Make a 2D KDE plot

SDSS.make_2D_KDE ()

<matplotlib.figure.Figure at Oxbl5ae30c>

1.0 15

12

Chapter 3. Examples

CosmoPhotoz Documentation, Release

5. Make a violin plot

SDSS.make_violin ()

3.2. Real Data

13

CosmoPhotoz Documentation, Release

1.0
08
.06
E
)
py 04
b | 02
= .$
;
g ao <'<- *
)
i' 0.2
= 04
N
e
005 015 025 035 045 055 065 075 085
zh'p{?{‘

Abuse of Object-Orientation

Imagine that we want to investigate how the catastrophic error evolves with the size of the sample used to train the
Generalised Linear Model. This can be easily carried out in an object-oriented way, in comparison to functional forms.

import numpy as np # for arrays
import matplotlib.pyplot as plt # for plotting

Load a full dataset
SDSS = PhotoSample (filename="../data/SDSS_nospec.csv", family="Gamma", link="log")

Definitions
train_size = np.array([100, 500, 1000, 5000, 1000017)
catastrophic_error = []

Run over training sizes
for i in range(len(train_size)):

User defined
SDSS.test_size = train_size[i]

This can also be placed in a method to make cleaner
SDSS.do_PCA()

SDSS.split_sample (random=True)

SDSS.do_GLM()

Collect the output
catastrophic_error.append(SDSS.catastrophic_error)

14 Chapter 3. Examples

CosmoPhotoz Documentation, Release

Make nicer for MPL
catastrophic_error = np.array(catastrophic_error)

Define the figure for plotting

fig = plt.figure(0)

ax = fig.add_subplot (111)

ax.errorbar (train_size, catastrophic_error)
ax.set_xlabel (r"S\rm Training\, size$")
ax.set_ylabel (r"$\rm Catastrophic\, errors$")

plt.show ()

? 1 1 1]

Catastrophic error

0 2000 4000 6000 8000 10000

Training =sie

3.2. Real Data 15

CosmoPhotoz Documentation, Release

16 Chapter 3. Examples

CHAPTER 4

CosmoPhotoz package

4.1 CosmoPhotoz.photoz module

4.2 CosmoPhotoz.run_gim module

17

CosmoPhotoz Documentation, Release

18 Chapter 4. CosmoPhotoz package

CHAPTER 5

Indices and tables

* genindex
* modindex

e search

19

	Installation
	Requirements

	Introduction
	Examples
	PHAT0
	Real Data

	CosmoPhotoz package
	CosmoPhotoz.photoz module
	CosmoPhotoz.run_glm module

	Indices and tables

